Code: CE4T6
II B.Tech - II Semester-Regular/Supplementary Examinations-April 2018

STRUCTURAL ANALYSIS-I
 (CIVIL ENGINEERING)

Duration: 3 hours
Max. Marks: 70
PART - A

Answer all the questions. All questions carry equal marks $11 \times 2=22$

1. a) Define about method of sections method?
b) What is Degree of redundancy?
c) Draw ILD for shear force at any section in a cantilever beam?
d) What do you mean by absolute maximum shear force?
e) Explain the effect of temperature rise on the horizontal thrust for a three hinged arch carrying a loading?
f) Define Eddy's theorem?
g) Write the equations to calculate Normal thrust at any section in an arch?
h) A Fixed beam carrying a concentrated load eccentrically placed on the span. Write the fixed end moments?
i) What is the prop reaction developed in a propped cantilever beam, length L , subjected to a point load at mid span?
j) Explain about Clapeyrons theorem of three moments?
k) Find the support moment for a propped cantilever subjected to a moment M at the prop?
PART - B

Answer any THREE questions. All questions carry equal marks.

$$
3 \times 16=48 \mathrm{M}
$$

2. Determine the forces in all the members by using method of joints for a two span continuous truss loaded as shown in fig. The area of cross section of $U_{1} L_{1}$ and $U_{3} L_{3}$ is $800 \mathrm{~mm}^{2}$ while for other members; it is $600 \mathrm{~mm}^{2}$. Consider E as constant for all the members.

16 M

3. A system of five loads $100 \mathrm{KN}, 140 \mathrm{KN}, 150 \mathrm{KN}, 80 \mathrm{KN}, 50 \mathrm{KN}$ crosses a beam of 15 m span with 50 KN leading the distance between the loads are $3.5 \mathrm{~m}, 2.5 \mathrm{~m}, 2.6 \mathrm{~m}$, and 1.4 m respectively. Find the maximum bending moment at the centre of the span. Also find the absolute Maximum bending moment of the span?
4. A parabolic arch of 10 m span and 4 m raise is hinged at the ends and at the crown as shown in fig. Calculate the Reactions, Normal thrust and radial shear under 20 kN load.

5. Find the Fixed end moments for the fixed beam shown in fig. if the support B sinks by 6 mm ? Consider $\mathrm{E}=2.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$, $\mathrm{I}=1600 \times 10^{4} \mathrm{~mm}^{4}$

6. Analyse the continuous beam shown in fig. by using Clapeyrons theorem of three moments.

